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Generally Covariant Schrodinger Equation
in Newton—Cartan Space—Time. Part I

J. Wawrzycki'
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Schidinger equation in Newton—Cartan space-time can be obtained from Einstein
equivalence principle, that is firstly one should obtain generally covarianb8iciyer’'s
equation in Galilean space—time (using generally covariant Hamilton—Jacobi formalism
and Schodinger’s Ansatz, as was previously shown) and get &tihger’s equation

in Newton—Cartan space-time with the help of equivalence principle. The equation
possesses a gauge freedbronnected with phase transformation of the wave function.
But absolute elements of the space-time possess a symmetry group and they depend
on f. So, a natural problem arises: to find the gadfge which absolute elements
becomeinvariant with respect to the group. In the paper the gadgis found with

the help of space—time properties, that is transformation rule of the wave function is
obtained from the space—time structure (in Newton—Cartan space-time). The special
form of f is found in the case when the space—time as a whole possesses a symmetry.

1. INTRODUCTION

Quantum mechanics in the gravity field is one of the most important problem
in physics. Moreover, there has been great interest in the quantum mechanics in
Newton—Cartan space—time of late; see for example Penrose (12@dnérzahl
(1996), and Kasevich and Chu (1991).

The paper is an direct continuation of Wawrzycki (2001) where the generally
covariant Schotlinger equation was obtained in Newton—Cartan space—time. The
equation possesses a gauge freedorhat transforms the phase of the wave
function. In the case of the flat space—time this additional degree of freedom was
uniquely eliminated by space—time symmetries. This means that transformation
properties of the wave function follow from space—time properties, see Wawrzycki
(2001).

It is shown in this paper how the pha$és established by space—time prop-
erties when gravity field is present. Newton—Cartan space—time as a whole does
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not possess any symmetry (in general case) and one would expect the problem
to be much more difficult than in flat space—-time. Moreover, one could suppose
that the problem in curved space—-time is not well defined. But the Newton—Cartan
space—time possesses absolute elements in addition to dynamical ones (contrary
to Theory of General Relativity). The absolute elements have a symmetry group.
They enter the Scbdinger equation and depend énso a natural problem arises:
to find explicit form of f, which brings the absolute elements into the form
invariant with respect to the symmetry group. This is enough to estalfligh
the manner analogous to that used in the Galilean space—time.

In other words the Schdinger equation follows from the equivalence prin-
ciple and its form in the privileged coordinates is

h? -
ihow = —— V20 + meWw 1
b >m + My (1)

with the inertial mass equal to the gravitational one, whedenotes Newtonian
potential fulfilling Laplace’s equation.

The paper is organized as follows. In section 2 absolute and dynamical ob-
jects of Newton—Cartan space—time are described. In section 3 gauge freedom is
eliminated by symmetry of absolute objects. In section 4 space—time with an ad-
ditional symmetry is considered. In section 5 Sutinger equation in privileged
coordinate system is obtained.

2. ABSOLUTE AND DYNAMICAL OBJECTS
OF NEWTON-CARTAN SPACE-TIME

Three independent objects describe Newton—Cartan space—time: the connec-
tion I'7,, the gradient of absolute ting, and contravariant tensor fiet#".
They fulfil the following postulates (after Trautman, 1963):

|. Affine connection is torsion-freé‘,ff,p] =0.
. R* =0.

yled
ll. There exist three linearly independent vector fiejfs such that

gl't, =0, V&' =0,
wherei = 1, 2, 3. This is equivalent to
1 —
t[va]pg =0.
IV. Curvature tensor is such that

R\;/M — R)\}L

(AR

where R =g"R} .

V. ng/tv =0.
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VI. The rank ofg" is equal to three and
g“'t, = 0.

VII. The space-time curves of a free-falling particles are geodesic§ of
VIII. Equations of the gravity field in the vacuum are

Rw =0,
whereR,, = R}, is the Ricci tensor.
It can be shown that
Vut, =0 2

for the gradient of the absolute tinhe
From 1, II, and 11l it follows that (Trautman, 1963)

Rlpe = 2v@"[olo1,

where
@y = Voe' and ¢"t, =0. 3)
The following substitutions do not change the value of the curvature tensor
o' — ot +a g, 4)

wherea' = al (t) are three arbitrary functions of time. Connection can be written
in the following form

T, =Tl + ity )

wherelg(,‘p is an integrable connection, that é(;pa = 0. From IV follows that

o =g"ave.
Field equations VIII have the form
gV, Vy¢ =0 or g" %,J %\,(p =0, (6)

where %,1 is the covariant derivative with respectIof(jp. From (6) follows thatp
is determined up to an arbitrary function of time. Because of (3) and (5), V and
(2) can be written in the form

V., =0 and V,g” =0. @)

So, ¢ is the only dynamical object. Among the quantitigsg"’, andT;, only

the connection is dynamical. With the help of the connection, however, covariant
tensorg,, and contravariant vectar* (first introduced by Datcourt, 1990, see
also Wawrzycki, 2001) can be defineg),, fulfils

gVoug’ = gt
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Lagrange function of a free-falling particle (motion of which is described by a
curvex* (t), wherer is an parameter along the curve not necessarily equal to the
absolute time) is
m g, XMX"
= — 8
2 t,x° ®

where the full-parameter derivative is marked by dot. Lagrange function is deter-
mined up to full-parameter derivative agg, is determined up to gauge transfor-
mation

g,uv — g;Lv + t“ 8\, f + t\,BM f. (9)
u* is defined in the following way

90" =87 — u°t,,

(10)
u“t, =1,
up to the gauge transformation
ut — ut — g*vo,f. (11)
Lagrange—Euler equations of the Lagrange function (8) give
F(,‘p = u"ot, + %g“”{avgpo + 9,0v0c — 05 Ovp)- (12)

Conversely, (10) and (12) up to the gauge determine covagiand contravari-
antu, so, they completely replace the affine connection. Formula (12) is gauge
independent. Instead of I, Il, Ill, and IV covariagtand contravarianti can be
introduced with the help of the formula (10) and (12).

From I, 11, and 111 it follows that there exists gaugein which covarianty
can be decomposed into two parts

g;LV = @HV - Zwtﬂtv, (13)

where® = g, u*u’ = —2¢. From this decomposition follows th&t,,u* = 0.
After direct calculation one get&},,, = 0 and the connection

o 1 . . o
F(,tp =u* avtp + Egud{a\/gpg + Bpgv(, — 8(,gtp}

is integrable and%p@,“, = 0. Contravarianu defined by (10) does not depend
on ¢ and is an absolute object of space-time as welf,as In section 3 the
gaugementioned earlier will be found (the explicit form of the phdseonnected
with a coordinate transformation) with the help of symmetry of absolute objects
(axioms I, II, 1ll, and IV will not be used).



Generally Covariant Schrédinger Equation. Il 1621

3. TRANSFORMATION RULE OF THE WAVE FUNCTION

Generally covariant Schdinger equation in Newton—Cartan space—time has
the form (Wawrzycki, 2001)

i A X h? 1A% m Hpv ih 1z
ihu" 9,V = %g YA A igm,u u'w — EVuu v, (14)

The equation may be found with the help of Sudliriger's Ansatz using the co-
variant Hamilton—Jacobi equation, which has the form (see Wawrzycki, 2001)

1 m
u*a,S+ %g’“’ 9,S0,S— Egm,u”u" =0. (15)
Equation (14) follows from the variational principle

8</Avd4x> =0,

wherev is theinvariant measuréscalar density of weight1) of Newton—Cartan
space—time, which is equal

V= \/ det@u + (1 — geguub)t, ty) (16)

andA is a scalar

ih h2 m
A= WUV, = UV, = o gtV UV g utut T, (17)

such thatAv is the Lagrange density of the Soklifiger equation.

Equations (14) and (15) are covariant with respect to coordinate transforma-
tions and gauge transformations (9) and (11), where the gauge transSants
W in the following way

S— S+mf and ¥ — e”ﬁlf\y.

(16) and (17) are gauge independent of course.
One can combine gauge transformation and coordinate transformation. In
the case of the flat space—time there exists a combination that lgjngsdu”
into the forminvariantwith respect to Galilean transformations (see Wawrzycki,
2001). This establishek. Namely, they have the transformation rule
ax* 9xY
guv - Wm(guv + tuav f + tvau f)

w

IXH

(18)

ut —

(U —g"o,f)
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where the coordinate transformatiatt — x* (this will be denoted by /) —
(1)) is combined with appropriate gauge transformatfon

Consider now the point transformation (not coordinate transformation) con-
nected with the above coordinate transformation in such a wayctmatlinate
system(w) is dragged along of the coordinate systéni) by the point trans-
formation, see Schouten (1951). That is, each point has the same coordinates
with respect to £) as its image (by the point transformation) has with respect
to ().

Now, let some fieldS (eventual indices are omitted) be given. l&be a
second field, whose components with respectdtd §re equal to the components
of the first fieldSin the corresponding point (with respect jo)). If thenS= §,
the fieldSis calledinvariant for the point transformatian

Substitutingg,,y andu* for Swith their transformation laws (18) one gets

—Bsx Ouv = 0. (8X”)Gpv + v (6X”)Gup + X9, Gy
— 1,0, F (5%) + t,3, T (6%) (19)
S5 Ut = 3y (SXM)UY — 8xVayu” = g™va, f (6x),

where infinitesimal point transformatio®t — x* + §x* was substituted. So, (19)
areinvariance condition®f covariantg and contravariant for a point transfor-
mationgx*.

In the case of the flat space—time (19) are fulfilled if and ondifs a space—
time symmetry (an element of the inhomogeneous Galilei group)faiscequal
to galilean phasdsee Wawrzycki, 2001).

Consider now the Newton—Cartan space—time. One has the following
theorems

Theorem 1. The rigid nonrotating motionssx* = dR &/ =R ¢/'dt (see
section2 postulatelll for definition of&/, where R are arbitrary functions of

time, dot denotes time derivative) and time translations compose symmetry group
of absolute elements, i.e. rigid nonrotating motidxsare the only transforma-
tions, which fulfil

A. g gV =0
B. 3t =0.
C. § u* = g"v 9, f(6x). (Obviously all rigid time-dependent motiors ful-

fil A andB. C eliminates time- dependent rotations. FrémB, C, and
(10) one gets D (follows from (19), but not conversely).)
~8 Guv = t, Oy T (8X) + b 9, T (8%) — 8 QupUeuPt, t, — 2u% 3, f (SX)t,t,.
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Theorem 2. C andD determinates

a. u* uniquely, _
b. the phase f up to an arbitrary function of tinfét):

fof'=f+f,
C. g,v Up to an arbitrary function of time (t):
G = Oy = Qv + 4 T +1,8, F = g +2F Ot

where dot denotes time derivative.

One can check it directly by substitutig,,, f', andu™ to C and D (of course
Ut — u* =ut —g*vo,f).

Theorem 3. Solution ofC andD is as follows
a. g = G.v — 2¢t,t, mentioned in sectioB, where
29 = —guuiu’ = —, %péﬂ\, =0, gu*=0, and
nguvv(/) =0;

b. u* is such thatv,,u¥ = g** 9,¢t,;
c. gradient of the phase of the transformatibnis equal

1
au f[p] = _gu)\v}\ + Egakvavktu - tpL

x / WV, 0% Gy dX* + (D)L, (20)
Clpo. Pl

wheresx# = R ()& dt = v* dt, so, v* is the tangent vector field of the integral
curves of point transformatiofix* understood as a one-parameter congruence
(one-parameter groypwith time t as the parameter,[@,, p] is a contour with
end-points in pand p.

The integral in the formula for gradient df determinates some function of
end-pointp up to a function of time depending on the choice of the con@ur
But f is determined only up to any function of time and there is no problem which
would be connected with the multivaluedness property of the integral. One can
check the result directly. Calculations are long but essentially simple.

Because offheorem 2there do not exist any other solutions than that pre-
sented inTheorem 3 Equation (20) gives the phase of thigid non-rotating
time-dependent transformatioBut because C and D define all possig)g and
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u*s, which differ from each other by a gauge transformatidnsletermined
by (20), (20) defines phase of any transformatiah, (*) — (x¥, u*) with
vt = Ut — UM,

From C and D follows thag,, is invariant (in the geometrical sense
mentioned earlier) for any rigid time-dependent transformatian/Ve shall find
invariance condition of that object. Firstly, one should find its gauge transfor-
mation, then combining it with coordinate transformation (like in (18)) one gets
transformation rule

. o, axt axY
9w = Gy = WW(Q#V +tonf +t,0,f
—{2u® 3, f — g* §, Tas Flt,t) (18)

Inserting to invariance definition (with the transformation rule in mind) one gets
invariance condition

D! — 8 Gy =t &y (6%) + 1ty 3y, T (8%) — 2u% 3, T (5x)t, 1.

D’ follows from C and D as has been remarked earlier (in consequence from A,
B, and C). Indeed, from the fact that

3 (~2¢) = § 0 = § (Guu"u’) = § guuu’

and from D one gets Tn the analogous way one can obtain invariance condition
of the potentialp, or equivalentlyy,

E. 5 (n)=—2u"9,f(6x)

but in this case BEs completely independent 8f B, and C (which is obvious,
because the Newton—Cartan space—time is not flat in general). Condition E is
fulfilled if and only if space—time is flat. This is an immediate consequence of
equivalence of invariance condition (19) for covarianand condition E this
equivalence can be easily seen if one takes into account D (see also discussion in
section 4).

C and D are generally covariant with respect to (18) witdetermined by
(20) as well ad’ is with respect to (13. Moreover contravariant and covariant
g are invariant with respect to time translations, space translations (this is evident,
because space translation is a special case of rigid motion), and rotations. All
invariance conditions are of the form C and D, and all of them are generally
covariant. A comment should be given concerning this fact. The phéisg of a
transformationSx depends on its velocity and acceleration. When the velocity
of the considered transformatiém is equal to zero then its phagé€sx) is equal
to zero. On the other hand for any realizationstdtic symmetrytranslation or
rotation) one can always choose a frame of reference in which velocity and phase of
the transformation is zero. Invariance conditionssiatic symmetrgre simplified
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in this frame and their right hand sides are equal to zero (and do not depend
on f explicitly). But the samesymmetryhasnonzero velocity in other frames of
referenceSo, the terms on the right hand sides of invariance conditions depending
on f cannot be omitted even when the symmetry is static.

As an example consider rotation invariance condition Qioh Galilean
space-time in inertial reference fram@a$ &nd (') connected by a Galilean trans-
formation @)—(u'). Infinitesimal rotationsx in (u) and ') is of the

form
0 , 0
wy _ v Wy — ) . o
(X = (8'ix') and ) = (SJ/VX' —¢! i/V't)

respectively, wher®' is the velocity of the transformatiomj — (') andej; =
—e¢ji. So, the velocity of the rotationsx in () and ') is equal

vr=0 and 6= (%)
s

respectively, and = 0in (u) andf # 0in (1), and Cis fulfilled in () and ).

4. SPACE-TIMES WITH A SYMMETRY ¢&#

It would seem that the meaning of the worslammetry ofp with respect
to the transformation determined by integral curves ¢fand constancy of the
potentialg along those curveis the same. But this is not exactly the same. The
reason lies in the fact that potential is not a scalar (or equivalently, covanieitt
their transformation rule (18) does not compose any tensorial quantity). Even for
a tensor density the meaning is not the same.

If the potentialy is constant along a family of integral curves of a given
vector fields#, then

§¢ =0 orequivalently §n=0. (21)

On the other hand invariance condition of the potential (or equivalghthas the
form E not equivalento (21).

Let us suppose that space—time possesses a symjr{atry symmetngtatic
or not). Consider infinitesimal symmetry transformatitinthat can be decom-
posed into static part (with the subscript zero) dpdamigwith nonzero velocity)

SeH = gl dt + v* dv,

wheredz is the parameter dftatic transformation andlv is the parameter of
dynamic transformation. The parameters are independent and even when the trans-
formationéé¢ is staticdynamicalpart cannot be eliminated, i.e. there always exists
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reference frame in whictlynamicalpart is not equal to zero (see discussion at the
end of preceding paragraph). A rigid non-rotating time-dependent transformation
can be considered aglgnamicalpart.

Because; (equivalently potentiab) is invariant, foré¢ the field dragged
along of the field; is equal ton. The componer»v(jragg of the field dragged along
atx + §& with respect to ') is equal to the componentin () atx

naragg(XM + 8&") = n(x"),

which is equivalent to

r)éiragg(xu) = r](xﬂ - Béﬂ)r

where (1') is the coordinate system dragged along by the point transformation
3&. One must compute component of dragged fielduipdt x and then compare

it with the component of initial field in the same frame)(at the same point.
Because of the transformation rule

n =n+2u"9,f(v*dv),
one has

NdragdX) — 1(X) = —2u" 9, f (v*)dv — d7&l 9,n — dvv" 3,1

= —dv2 /uvvvv“gaﬁ dxf —dt&” 9,n — dvv* 9,n = 0.
Clpo. Pl

This is equivalent to E witlix = §£. But this can be fulfilled if and only if
5n=0
and

§n=—2u"d,f(v)= —2/ U’ Vyv® gy, dx*

because the parameterandv are independent. The second equation is nothing
else thaninvariance conditiongfor any rigid time-dependent nonrotating motion
v. So, from the invariance of (equivalentlyg) with respect to any transforma-
tion & (translation or rotation) follows its invariance for any rigid time-dependent
nonrotating motiorv. Inserting a motiony with constant velocity to the last equa-
tion one can see thatis constant along symultaneity hyperplane, i.e. space—time
must be flatConditionE is a very strong condition and can be fulfilled in the flat
space—time only.

But one can consider a situation in whigt{potentialy) is constant along a
given field¢ in any coordinate system, which means that (21) is fulfilled in any
reference frame. This imposes a condition on the possible form of the ghase
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because transformations ruleipfor ¢) depends orf . (21) can be fulfilled in any
coordinate system if and only if

ut s a,f—gvsa.faf=0 (22)

Assume the space—time is static (i.e., possesses a time-like symgetry
From A, B, and C withsx = §¢ follows that

g", =0 and V,&" =t,9" 3.

Inserting (20) to (22) one gets

f(t) = / UV,0%gyéM,dxY and V,V,v* =0.

Clpo. pl
One must be very careful with differentiation of the integral term in (20), because
the integral depends on the choice of the integration cor@p, p]. So, if the

space—time is static @ris constant along the integral curves of the time-like field
& in any reference frame, then

1
9, () = _ng* + Egaﬁv"‘vﬂtu —t, /upvpv“gm, dx’
C[po, pl
+1, /uprU“ga,\skt\, dx’ + not,,
Clpo. pl
where V,V,v* = V, V, (RI(t)&*) = R (t)&t,t, = 0, soR' = 0andy, is an
arbitrary constant.

Ifin addition the space—time is invariant under the action of the rotation group
thenVv,v* = 0 in the formula given earlier.

5. SCHRODINGER EQUATION IN A PRIVILEGED
COORDINATE SYSTEM

From A, B, and VI follows that there exist a privileged coordinate system in
which

(gp.V) = 1 ' (t//-) = (11 01 0= O)
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Solving C and D in the coordinate system one gets

1 —2¢ 0
0 1
(UM) = 0 and @uv) = 1 ’
0 0 1
where VIl gives
%Z(p =0.

Inserting this to (14) one gets Sdilinger equation in the privileged frame
h? -
ihgW = ——V2U 4+ mpW. 23
t >m + Mg (23)

As an example consider the time-dependent acceleration ateags (for
simplicity)
X = X + R(t),

in the privileged frame. Inserting the transformation to (20) one gets
. 1. .. -
df = —Rdx + > R?dt — Rxdt+ f(t)dt,
and after simple integration

f(t,x)=—l'?x+%/t R2dt + f(t). (24)
0

Formula (24) is well known and was obtained by Kucfg80), but in a rather
arbitrary way. In the exceptional case when the acceleration is time-independent
andR(t) = 1at?, wherea = R = constant
1 —
f = —atx+ éa2t3 + f(1).
If the space—time is static

1
f = —atx+ éazt3 + 1ot + const (25)

no IS an arbitrary constant calledternal energythat cannot be derived from
the invariance conditions even in the flat Galilean space—time, seglLéblond
(1963), or Wawrzycki (N.D.). Formula (25) is also known, see for example Colella
et al (1975).
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